

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # How to version an API

	[Acronyms](#acronyms)

	[Basics](#basics)

	[When to change versions](#when-to-change-versions)

Acronyms

Acronym | Description |

:—— | :———- |

API | Application Program Interface |

HTTP | Hypertext Transfer Protocol |

URI | Uniform Resource Identifier |

Basics

APIs are versioned using a MAJOR number only. The version of the API appears in it’s URI.

For example, this URI structure is used to request version 1 of the ‘plans’ API:

`
https://packit.org/v1/plans
`

and this to request version 2:

`
https://packit.org/v2/plans
`

Follow the Semantic Versioning 2.0.0 standard for MAJOR number format, see [this link](<http://semver.org/spec/v2.0.0.html>)

When to change versions

The API version number indicates a certain level of backwards-compatibility for the API behaviour.
API clients depend on the expected level of compatibility, and extra care should be taken to maintain their trust.

The following types of changes DO require a new API version number:

	Removed or renamed resource

	Any mandatory change on an existing request
+ e.g. New header required
+ e.g. New data in the body of the request

The following types of changes DO NOT require a new API version number:

	New resource added

	New HTTP method on an existing resource added

	Optional additional data is required for a request

	Request marked as deprecated but still existing (i.e. Requests no longer supported)

 # Packer Startegy

Welcome to Packer Starategy

	[Acronyms](#acronyms)

	[Versioning](./README-VERSIONING.md)

	[API Versioning](./API-VERSIONING.md)

	[Service Versioning](./SERVICE-VERSIONING.md)

Acronyms

Acronym | Description |

:—— | :———- |

API | Application Program Interface |

 # Service, and API versioning

	[Acronyms](#acronyms)

	[Overview](#overview)

	[Use Cases when updating the version of the API and Services](#use-cases-when-updating-the-version-of-the-api-and-services)

	[Version change examples](#version-change-examples)
+ [Defect fix on the plans service](#defect-fix-on-the-plans-service)
+ [Add functionality to the plans service](#add-functionality-to-the-plans-service)
+ [Change or remove functionality to the plans service](#change-or-remove-functionality-to-the-plans-service)

Acronyms

Acronym | Description |

:—— | :———- |

API | Application Program Interface |

Overview

A PackIt Platform release consists of a specific versioned set of services,
which expose RESTful APIs. All RESTful APIs are also versioned.

Release notes are published for each release summarising the release changes.

Versioning policies are important internally, to manage software changes and
ensure that correct component versions are deployed together, and externally,
to ensure compatibility for external clients.

This document summarises the relevant versioning policies.

Use Cases when updating the version of the API and Services

Use Case | Service Version | API Version |

:——– | :————– | :———- |

Defect Fix | Patch change to services impacted | No change |

Add functionality | Minor change to services impacted | No change |

Remove functionality | Major change to services impacted | Increment |

Change functionality | Major change to services impacted | Increment |

Version change examples

Defect fix on the plans service

| Service Version | API Version |

:—- | :————– | :———- |

Pre change | Plans service 1.0.0 | v1 |

Post change | Plans service 1.0.1 | v1 |

Add functionality to the plans service

| Service Version | API Version |

:—- | :————– | :———- |

Pre change | Plans service 1.0.1 | v1 |

Post change | Plans service 1.1.0 | v1 |

Change or remove functionality to the plans service

| Service Version | API Version |

:—- | :————– | :———- |

Pre change | Plans service 1.0.1 | v1 |

Post change | Plans service 2.0.0 | v2 |

 # How to version a service

	[Acronyms](#acronyms)

	[Basics](#basics)

	[Incompatible API changes](#incompatible-api-changes)

	[API deprecation](#api-deprecation)

	[API deletion](#api-deletion)

Acronyms

Acronym | Description |

:—— | :———- |

API | Application Program Interface |

Basics

The version of services will be following Semantic Versioning 2.0.0, details of
which can be found [here](<http://semver.org/spec/v2.0.0.html>)

Versions will take the format MAJOR.MINOR.PATCH These values will change under
the following conditions

	MAJOR version when you make incompatible API changes

	MINOR version when you add functionality in a backwards-compatible manner

	PATCH version when you make backwards-compatible bug fixes

An update to the MAJOR version should see the MINOR and PATCH version reset to zero.

An update to the MINOR version should see the PATCH version reset to zero.

Services maintained in [Github](http://github.com/) should have a tagged release
for each version that follows this naming convention.

An additional part can be added to the version as a reference understandable to
the source code management system e.g.:

	The subversion revision

	The git short revision

Incompatible API changes

API breaks include:

	Removing an API

	Changing the input to an API

	Changing the output of an API

	Changing the behaviour of an API

Prior to an incompatible API change, the following needs to be adhered to:

	The forthcoming change must be communicated early

	System tests to be updated

	Optional migration tools must be supplied

	The migration path must be documented

API deprecation

On deprecation an API will still be available and working, but unsupported,
with a documented migration path. This should produce a MINOR change.

API deletion

Deletion of an an API follows a deprecation, users are expected to follow the
migration path documented in the deprecation migration path. This will produce
a MAJOR change.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/file.png

_static/minus.png

